


HAG Brunnenbaupumpe SRT400-700

Die Unterwasser Schmutzwasserpumpen **HAG SRT 400** und 7**00** sind speziell für den harten Baustelleneinsatz konstruiert. Durch die **kompakte** Bauform werden Sie im Brunnen bzw. in der Künette in Ihrer **Bewegungsfreiheit** nicht eingeschränkt.

				Fördermenge													
Type	kW	Α	V	m³/h	0	11,4	12,6	13,8	15,6	18	19,8	24	27	30	33	36	42
				l/min	0	190	210	230	260	300	330	400	450	500	550	600	700
SRT 4/400	3	8,0	400	Н	50	41	40	37	35	31	28	20	14				
SRT 5/400	4	10	400		64	52	51	49	46	42	38	29	20				
SRT 3/700	4	10	400	m	41					35	34	31	28	25	22	18	9

Туре	Ab	messu	ngen		Gew.	
	Α	В	С	DNM	Kg	Sandanteil max.
SRT 4/400	1185	60	142	2"	41,5	300 g/m3
SRT 5/400	1284	60	142	2"	46,0	300 g/m3
SRT 3/700	1262	60	142	2"	40,5	100 g/m3

Die Pumpe saugt am tiefsten Punkt an und kühlt den Motor mit dem geförderten Medium. Durch die **spezielle Konstruktion** dieser Pumpe und durch die sorgfältige Auswahl der Materialien (Laufräder und Stufengehäuse werden in Polycarbonat Fieberglas verstärkt gefertigt, Motorgehäuse und Konstruktionsteile sind in rostfreiem Stahl ausgeführt) ist es ihr möglich auch **sandhältiges** Wasser zu fördern ohne dadurch in ihrer Funktionsweise beeinträchtigt zu werden.